Deflection of symmetrical section beam in relation to stress

Richard D Smith

01 October 2023

Preview

The familiar equation for deflection of a "simple beam" in response to central loading force applied

$$
y=\frac{F L^{3}}{48 E I}
$$

has the equivalent expression for deflection in relation to maximum stress state within the beam

$$
y=\frac{\sigma L^{2}}{6 E H}
$$

which is useful.

The derivation

Symbols - all as familiarly used
$I=$ Second Moment of Area
$Z=$ Section Modulus
$M=$ a Moment; a bending and/or turning force
$F=$ a force (in Newtons; N)
$L=$ length of the beam between supports
$H=$ height of symmetrical section in direction it is being bent
$\sigma=$ stress (in N / m^{2})
$y=$ beam bending deflection transverse to the length L dimension

Fundamental beam equations

Beam deflection vs force for a "simple beam":

$$
y=\frac{F L^{3}}{48 E I}
$$

Maximum moment (twist; torque) in a "simple beam":

$$
M=\frac{F L}{4}
$$

The fundamental equation which for any beam combines the purely geometric property and the stress to give the moment in the beam:

$$
M=\sigma Z
$$

Precursor rearrangements

$Z=I /$ half-height for a symmetrical section, so

$$
Z=\frac{I}{H / 2}=\frac{2 I}{H}
$$

Apply this to M

$$
M=\sigma Z=\sigma \frac{2 I}{H}=\frac{2 \sigma I}{H}
$$

Considered on its own and simply rearranged

$$
M=\frac{F L}{4} \rightarrow F=\frac{4 M}{L}
$$

Substitutions

For F in $y=\frac{F L^{3}}{48 E I}$ given $F=\frac{4 M}{L}$:

$$
y=\frac{4 M}{L} \frac{L^{3}}{48 E I}=\frac{M L^{2}}{12 E I}
$$

For M in above equation given $M=\frac{2 \sigma I}{H}$:

$$
y=\frac{2 \sigma I}{H} \frac{L^{2}}{12 E I}=\frac{\sigma L^{2}}{6 E H}
$$

noting this is the juncture at which I cross-cancels and disappears from this derived expression.

The objective is achieved, deriving

$$
y=\frac{\sigma L^{2}}{6 E H}
$$

This equation will often be used in the transposed form

$$
\sigma=\frac{6 E H y}{L^{2}}
$$

Significances

The Second Moment of Area I has cross-cancelled out of this derived expression. Much less information is needed to do this calculation of beam deflection $v s$ (maximum) stress than is needed to do the beam calculations relating to force. Given calculation of I needs the cross-section fully described (shape; widths and heights, thicknesses, etc).
Whereas in the derived expression, the only characteristic of the cross-section needed is the height. Which can readily be measured for a beam already in service.

Useful applications of beam deflection $v s$ stress

The equation $\sigma=\frac{6 E H y}{L^{2}}$ can be applied to evaluate whether a beam already in service is bearing a load which is acceptable.
Here are the very practical steps:

- to get y, stretch a string from end to end along the pressed-against side of the beam and use a rule to measure the deflection of the beam away from straight - the gap between the string and the beam at the midpoint
- to get L, measure the length of the beam, typically with a tape measure
- to get H, measure the height of the beam, with rule or tape measure
- E the Elastic modulus of steel can be taken as 200 GPa (210 GPa is another common approximation used)
- apply the equation to calculate σ given y, L and H have been measured as described and E is almost invariant for steels and is known
- evaluate for the application whether the stress in the beam is acceptable and the safety factor is sufficient

